“Yapay Zekâ” Nedir?

Literatürde “Yapay Zekâ”nın tanımı, teknolojinin gelişmesiyle değişim göstermektedir.

Yapay zekâ, bir bilgisayarın veya bilgisayar kontrollü robotun, genellikle akıllı varlıklarla ilişkili görevleri yerine getirme yeteneğidir. Terim sıklıkla akıl yürütme, anlam keşfetme, genelleme veya geçmiş deneyimlerden öğrenme gibi insanlara özgü entelektüel süreçlerle donatılmış sistemler geliştirmek amacıyla kullanılmaktadır. 

“Yapay Zekâ”nın Faydaları Nelerdir?

Yapay zekâ, bir insanın yapabileceği bazı görevleri daha fazla veriyle daha hızlı bir şekilde yapılmasına imkân tanıyarak, hayatımızı kolaylaştırmaktadır. Bu sebeple, yapay zekâ; sesli asistanlar, dil çevirileri, öneri sistemleri, navigasyon, sosyal güvenlik, sağlık hizmetleri, e-ticaret ve yardımcı robot uygulamalarıyla günlük hayatımızda yer almaktadır. Siber güvenlik ve savunma sanayi gibi sektöre özel stratejik çalışmalarda da kullanılmaktadır.

“Yapay Zekâ” Terimi İlk Defa Ne Zaman ve Kim Tarafından Kullanılmıştır?

1950’li yılların başında Alan Turing’in “Makineler Düşünebilir Mi?” sorusuyla makine öğrenmesi kavramı ortaya çıkmış, Bilgisayar Bilimci ve Bilişsel Bilimci “John McCarthy” tarafından “Yapay Zekâ” terimi ilk kez düzenlenen yapay zekâ konferansı olan “Dartmouth Konferansı”nda 1956 yılında kullanılmıştır.

‘Veri’ ve “Yapay Zekâ” Arasında Nasıl Bir İlişki Vardır?

Yapay zekânın eğitimi esnasında gereken en önemli unsur ‘veri’dir. Verinin büyüklüğü, hacmi ve çeşitliliği arttıkça yapay zekânın öğrenme kapasitesinin de artması beklenmektedir. Günümüzde, üretilen veri miktarının hızlı bir şekilde artması ve “Büyük Veri” işleme yeteneklerinin de gelişmesiyle, yapay zekâ çözümleri birçok alanda karşımıza çıkmaktadır.

“Büyük Veri” Nedir?

Bilgi toplama unsurları hayatımızın her alanında yer almaktadır. Bu sebeple, veri miktarının artmasının yanı sıra veriye erişim hızı da artmaktadır. Dolayısıyla, geleneksel veri işleme teknikleri yetersiz kalmaktadır. Bu da “Büyük Veri” ve çözümlerini beraberinde getirmektedir.

Basitçe ifade etmek gerekirse, “Büyük Veri”nin temel özellikleri; hacim, hız ve çeşitliliktir. Büyük veri, daha önce çözülemeyen problemleri daha hızlı ve etkin olarak çözmek için kullanılabilir. 

Neden Yapay Zekâya İhtiyacımız Var?

Yapay zekâ hayatın birçok noktasında yansız, eşitlikçi uygulamalarla toplumun refah düzeyini arttırabilme yetenekleri dolayısıyla ihtiyaçtır. Güncellenebilen ve kişiselleştirilebilen yapay zekâ destekli araçlar, bireylerin ve toplumun kalkınmasına etki edecek uygulamalardır. Örneğin, navigasyon, sesli asistan, e-ticaret gibi uygulamalar bireylerin hayatını kolaylaştırmaktadır.

Günlük Hayatta Kullanılan Yapay Zekâ Uygulamaları Nelerdir?

Yapay zekâ birçok alanda insanların karar alma süreçlerine yardımcı olabilmektedir. Böylece, hizmetler daha kaliteli ve hızlı bir şekilde sunulabilmektedir. Bu kapsamda, yapay zekâ uygulamaları ve bu uygulamaların sağlamış olduğu hizmetlere gün geçtikçe daha fazla ihtiyaç duyulacaktır.

Yapay zekânın başlıca kullanım alanları olarak, aşağıdaki uygulamaları sıralamak mümkündür:

Görüntü İşleme

Yüz Tanıma

Güvenlik ve Gözetleme

Sosyal Ağlarda Fotoğraf Etiketleme

Spor Analitiği ve Strateji Optimizasyonu

Sentetik Görüntü Üretimi

Sahte Fotoğraf ve Video Üretimi

Ses İşleme

Müzik Tanıma

Sesli Asistanlar

Sesli Yanıt ve Şifre

Konuşmadan Metin Sentezi

Metinden Konuşma Sentezi

Metin İşleme

Çeviri Servisleri

Çevrimiçi Sohbet ve Asistan

Sosyal Medya Analitiği ve Duygu Durum Analizi

Kişiye Özgü Yazım Düzeltme ve Öneri

Veri İşleme

Öneri Sistemleri

İlan Öneri

Müzik Öneri

Müşteri Deneyimi ve Müşteriler için Akıllı Kampanya Önerisi

Hava Durumu, Trafik Yoğunluğu Gözeterek Rota Planlama

Periyodik Bakım ve Onarım Kestirimi

İşe Alım ve Performans Değerlendirme Sistemleri

Oyun Motorları

Sağlık Verilerinin Analizi ve Tedavi Planlaması

Tanı Koyma ve Tedavi Planlama Sürecinde Doktorlara Yardımcı Olan Uygulamalar

İnsansız – YZ Destekli Sürüş Sistemleri

Otonom Araçlarda Karar Destek Sistemleri

Sigortacılık ve Finans

Sanal Asistanlar

Hasar Yönetimi

Sahtekârlık Tespiti ve Önleme, Anomali Tespit Uygulamaları

Büyük Veri Analitiği

Büyük Veri Analizi ile Davranış Analizi

Tarım ve Hayvancılıkta Akıllı Uygulamalar

İnsansız Hava Aracı (İHA) ile Görüntü İşleme Temelli Hassas Tarım Uygulamaları

Hassas Hayvansal Üretim

Siber Güvenlik

Siber Saldırıları Tespit ve Engelleme için Uzman Sistem

Kötücül Yazılım Analizi

Yapay Zekâ Terminolojisi: Bilinmesi Gereken En Yaygın Yapay Zekâ Terimleri Nelerdir?

En yaygın “Yapay Zekâ” terimlerinden bazıları şunlardır:

Veri

‘Veri’, yapay zekâ ve makine öğreniminin temelidir. Veriler, bir veya daha fazla kişi veya nesne hakkındaki nitel veya nicel değişkenlerin bir dizi değeridir.

Algoritma

İyi tanımlanmış kuralların ve işlemlerin adım adım uygulanmasıyla bir sorunun giderilmesi veya sonuca en hızlı biçimde ulaşılması işlemidir.

Makine Öğrenimi

Makine öğrenimi, analitik model oluşturmayı otomatikleştiren bir veri analiz yöntemidir. Sistemlerin verilerden öğrenebileceği, kalıpları belirleyebileceği ve minimum insan müdahalesi ile karar verebileceği fikrine dayanan yapay zekânın alt dalıdır.

Derin Öğrenme

Derin öğrenme, bilgisayarların yüksek bilişsel fonksiyonları gerçekleştirebilmesi için geliştirilen bir makine öğrenimi tekniğidir. Çok sayıda yapay nöron katmanından oluşan sinir ağlarının kullanımıdır. Derin öğrenme, özellikle sürücüsüz (otonom) araçlar gibi görüntü tabanlı yapay zekâ uygulamalarının arkasındaki önemli bir unsurdur.

Yapay Sinir Ağları

Yapay nöronların birleşimiyle kurulan yapay ağ ile insan beyninin çalışma biçiminden esinlenen bilgi işlem sistemleridir.

Yorum yapabilmek için oturum açmalısınız.